Track Common Adversary Tasks Performed Using BADFLICK

Presented by: Ashwin (Microsoft Azure MVP)

BADFLICK is a backdoor used by Leviathan in spearphishing campaigns first reported in 2018 that targeted the U.S. engineering and maritime industries.

Source:

MITRE ATT&CK® Matrix for Enterprise


Now, let's see the details around the series of events associated with this software in chronological order, and how we can work to mitigate or detect these threats.

Phishing

Initial Access

Spearphishing Attachment

BADFLICK has been distributed via spearphishing campaigns containing malicious Microsoft Word documents.

Adversaries may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Spearphishing attachment is a specific variant of spearphishing. Spearphishing attachment is different from other forms of spearphishing in that it employs the use of malware attached to an email. All forms of spearphishing are electronically delivered social engineering targeted at a specific individual, company, or industry. In this scenario, adversaries attach a file to the spearphishing email and usually rely upon User Execution to gain execution. Spearphishing may also involve social engineering techniques, such as posing as a trusted source.

There are many options for the attachment such as Microsoft Office documents, executables, PDFs, or archived files. Upon opening the attachment (and potentially clicking past protections), the adversary's payload exploits a vulnerability or directly executes on the user's system. The text of the spearphishing email usually tries to give a plausible reason why the file should be opened, and may explain how to bypass system protections in order to do so. The email may also contain instructions on how to decrypt an attachment, such as a zip file password, in order to evade email boundary defenses. Adversaries frequently manipulate file extensions and icons in order to make attached executables appear to be document files, or files exploiting one application appear to be a file for a different one.

Antivirus/Antimalware

Anti-virus can also automatically quarantine suspicious files.

Network Intrusion Prevention

Network intrusion prevention systems and systems designed to scan and remove malicious email attachments can be used to block activity.

Restrict Web-Based Content

Block unknown or unused attachments by default that should not be transmitted over email as a best practice to prevent some vectors, such as .scr, .exe, .pif, .cpl, etc. Some email scanning devices can open and analyze compressed and encrypted formats, such as zip and rar that may be used to conceal malicious attachments.

Software Configuration

Use anti-spoofing and email authentication mechanisms to filter messages based on validity checks of the sender domain (using SPF) and integrity of messages (using DKIM). Enabling these mechanisms within an organization (through policies such as DMARC) may enable recipients (intra-org and cross domain) to perform similar message filtering and validation.

User Training

Users can be trained to identify social engineering techniques and spearphishing emails.

Monitoring the following activities in your Organization can help you detect this technique.

Application Log: Application Log Content

Logging, messaging, and other artifacts provided by third-party services (ex: metrics, errors, and/or alerts from mail/web applications)

Monitor for third-party application logging, messaging, and/or other artifacts that may send spearphishing emails with a malicious attachment in an attempt to gain access to victim systems. Filtering based on DKIM+SPF or header analysis can help detect when the email sender is spoofed. Anti-virus can potentially detect malicious documents and attachments as they're scanned to be stored on the email server or on the user's computer. Monitor for suspicious descendant process spawning from Microsoft Office and other productivity software.

File: File Creation

Initial construction of a new file (ex: Sysmon EID 11)

Monitor for newly constructed files from a spearphishing emails with a malicious attachment in an attempt to gain access to victim systems.

Network Traffic: Network Traffic Content

Logged network traffic data showing both protocol header and body values (ex: PCAP)

Monitor and analyze SSL/TLS traffic patterns and packet inspection associated to protocol(s) that do not follow the expected protocol standards and traffic flows (e.g extraneous packets that do not belong to established flows, gratuitous or anomalous traffic patterns, anomalous syntax, or structure). Consider correlation with process monitoring and command line to detect anomalous processes execution and command line arguments associated to traffic patterns (e.g. monitor anomalies in use of files that do not normally initiate connections for respective protocol(s)). Filtering based on DKIM+SPF or header analysis can help detect when the email sender is spoofed.

Network Traffic: Network Traffic Flow

Summarized network packet data, with metrics, such as protocol headers and volume (ex: Netflow or Zeek http.log)

Monitor network data for uncommon data flows. Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious.

User Execution

Execution

Malicious File

BADFLICK has relied upon users clicking on a malicious attachment delivered through spearphishing.

An adversary may rely upon a user opening a malicious file in order to gain execution. Users may be subjected to social engineering to get them to open a file that will lead to code execution. This user action will typically be observed as follow-on behavior from Spearphishing Attachment. Adversaries may use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk, .pif, and .cpl.

Adversaries may employ various forms of Masquerading and Obfuscated Files or Information to increase the likelihood that a user will open and successfully execute a malicious file. These methods may include using a familiar naming convention and/or password protecting the file and supplying instructions to a user on how to open it.

While Malicious File frequently occurs shortly after Initial Access it may occur at other phases of an intrusion, such as when an adversary places a file in a shared directory or on a user's desktop hoping that a user will click on it. This activity may also be seen shortly after Internal Spearphishing.

Behavior Prevention on Endpoint

On Windows 10, various Attack Surface Reduction (ASR) rules can be enabled to prevent the execution of potentially malicious executable files (such as those that have been downloaded and executed by Office applications/scripting interpreters/email clients or that do not meet specific prevalence, age, or trusted list criteria). Note: cloud-delivered protection must be enabled for certain rules. 

Execution Prevention

Application control may be able to prevent the running of executables masquerading as other files.

User Training

Use user training as a way to bring awareness to common phishing and spearphishing techniques and how to raise suspicion for potentially malicious events.

Monitoring the following activities in your Organization can help you detect this technique.

File: File Creation

Initial construction of a new file (ex: Sysmon EID 11)

Monitor for newly constructed files that are downloaded and executed on the user's computer. Endpoint sensing or network sensing can potentially detect malicious events once the file is opened (such as a Microsoft Word document or PDF reaching out to the internet or spawning powershell.exe).

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Monitor for newly constructed processes and/or command-lines for applications that may be used by an adversary to gain initial access that require user interaction. This includes compression applications, such as those for zip files, that can be used to Deobfuscate/Decode Files or Information in payloads.

Deobfuscate/Decode Files or Information

Defense Evasion

BADFLICK can decode shellcode using a custom rotating XOR cipher.

Adversaries may use Obfuscated Files or Information to hide artifacts of an intrusion from analysis. They may require separate mechanisms to decode or deobfuscate that information depending on how they intend to use it. Methods for doing that include built-in functionality of malware or by using utilities present on the system.

One such example is use of certutil to decode a remote access tool portable executable file that has been hidden inside a certificate file.  Another example is using the Windows copy /b command to reassemble binary fragments into a malicious payload. 

Sometimes a user's action may be required to open it for deobfuscation or decryption as part of User Execution. The user may also be required to input a password to open a password protected compressed/encrypted file that was provided by the adversary.

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features.

Monitoring the following activities in your Organization can help you detect this technique.

File: File Modification

Changes made to a file, or its access permissions and attributes, typically to alter the contents of the targeted file (ex: Windows EID 4670 or Sysmon EID 2)

Monitor for changes made to files for unexpected modifications that attempt to hide artifacts.

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Monitor for newly executed processes that attempt to hide artifacts of an intrusion, such as common archive file applications and extensions (ex: Zip and RAR archive tools), and correlate with other suspicious behavior to reduce false positives from normal user and administrator behavior.

Script: Script Execution

Launching a list of commands through a script file (ex: Windows EID 4104)

Monitor for any attempts to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent.

Virtualization/Sandbox Evasion

Defense Evasion

Time Based Evasion

BADFLICK has delayed communication to the actor-controlled IP address by 5 minutes.

Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.

Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny.

Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments. Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data).

Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment's timestamp before and after execution of a sleep function.

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features.

Monitoring the following activities in your Organization can help you detect this technique.

Command: Command Execution

Invoking a computer program directive to perform a specific task (ex: Windows EID 4688 of cmd.exe showing command-line parameters, ~/.bash_history, or ~/.zsh_history)

Monitor executed commands and arguments that may employ various time-based methods to detect and avoid virtualization and analysis environments. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required.

Process: OS API Execution

Initial construction of a WMI object, such as a filter, consumer, subscription, binding, or provider (ex: Sysmon EIDs 19-21)

Monitor for API calls that may employ various time-based methods to detect and avoid virtualization and analysis environments. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required.

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Time-based evasion will likely occur in the first steps of an operation but may also occur throughout as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required. Monitoring for suspicious processes being spawned that gather a variety of system information or perform other forms of Discovery, especially in a short period of time, may aid in detection.

System Network Configuration Discovery

Discovery

BADFLICK has captured victim IP address details.

Adversaries may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems. Several operating system administration utilities exist that can be used to gather this information. Examples include Arp, ipconfig/ifconfig, nbtstat, and route.

Adversaries may also leverage a Network Device CLI on network devices to gather information about configurations and settings, such as IP addresses of configured interfaces and static/dynamic routes.

Adversaries may use the information from System Network Configuration Discovery during automated discovery to shape follow-on behaviors, including determining certain access within the target network and what actions to do next.

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features.

Monitoring the following activities in your Organization can help you detect this technique.

Command: Command Execution

Invoking a computer program directive to perform a specific task (ex: Windows EID 4688 of cmd.exe showing command-line parameters, ~/.bash_history, or ~/.zsh_history)

Monitor executed commands and arguments that may look for details about the network configuration and settings, such as IP and/or MAC addresses, of systems they access or through information discovery of remote systems.

Process: OS API Execution

Initial construction of a WMI object, such as a filter, consumer, subscription, binding, or provider (ex: Sysmon EIDs 19-21)

Monitor for API calls (such as GetAdaptersInfo() and GetIpNetTable()) that may gather details about the network configuration and settings, such as IP and/or MAC addresses.

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Monitor for executed processes (such as ipconfig/ifconfig and arp) with arguments that may look for details about the network configuration and settings, such as IP and/or MAC addresses.

Script: Script Execution

Launching a list of commands through a script file (ex: Windows EID 4104)

Monitor for any attempts to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent.

System Information Discovery

Discovery

BADFLICK has captured victim computer name, memory space, and CPU details.

An adversary may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Adversaries may use the information from System Information Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.

Tools such as Systeminfo can be used to gather detailed system information. If running with privileged access, a breakdown of system data can be gathered through the systemsetup configuration tool on macOS. As an example, adversaries with user-level access can execute the df -aH command to obtain currently mounted disks and associated freely available space. Adversaries may also leverage a Network Device CLI on network devices to gather detailed system information. System Information Discovery combined with information gathered from other forms of discovery and reconnaissance can drive payload development and concealment.

Infrastructure as a Service (IaaS) cloud providers such as AWS, GCP, and Azure allow access to instance and virtual machine information via APIs. Successful authenticated API calls can return data such as the operating system platform and status of a particular instance or the model view of a virtual machine.

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features.

Monitoring the following activities in your Organization can help you detect this technique.

Command: Command Execution

Invoking a computer program directive to perform a specific task (ex: Windows EID 4688 of cmd.exe showing command-line parameters, ~/.bash_history, or ~/.zsh_history)

Monitor executed commands and arguments that may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture.

Process: OS API Execution

Initial construction of a WMI object, such as a filter, consumer, subscription, binding, or provider (ex: Sysmon EIDs 19-21)

Monitor for API calls that may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture. Remote access tools with built-in features may interact directly with the Windows API to gather information. Information may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell. In cloud-based systems, native logging can be used to identify access to certain APIs and dashboards that may contain system information. Depending on how the environment is used, that data alone may not be useful due to benign use during normal operations.

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Monitor newly executed processes that may attempt to get detailed information about the operating system and hardware, including version, patches, hotfixes, service packs, and architecture.

File and Directory Discovery

Discovery

BADFLICK has searched for files on the infected host.

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system. Adversaries may use the information from File and Directory Discovery during automated discovery to shape follow-on behaviors, including whether or not the adversary fully infects the target and/or attempts specific actions.

Many command shell utilities can be used to obtain this information. Examples include dir, tree, ls, find, and locate. Custom tools may also be used to gather file and directory information and interact with the Native API. Adversaries may also leverage a Network Device CLI on network devices to gather file and directory information.

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features.

Monitoring the following activities in your Organization can help you detect this technique.

Command: Command Execution

Invoking a computer program directive to perform a specific task (ex: Windows EID 4688 of cmd.exe showing command-line parameters, ~/.bash_history, or ~/.zsh_history)

Monitor executed commands and arguments that may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system.

Process: OS API Execution

Initial construction of a WMI object, such as a filter, consumer, subscription, binding, or provider (ex: Sysmon EIDs 19-21)

Monitor for API calls that may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system.

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Monitor newly executed processes that may enumerate files and directories or may search in specific locations of a host or network share for certain information within a file system.

Virtualization/Sandbox Evasion

Discovery

Time Based Evasion

BADFLICK has delayed communication to the actor-controlled IP address by 5 minutes.

Adversaries may employ various time-based methods to detect and avoid virtualization and analysis environments. This may include enumerating time-based properties, such as uptime or the system clock, as well as the use of timers or other triggers to avoid a virtual machine environment (VME) or sandbox, specifically those that are automated or only operate for a limited amount of time.

Adversaries may employ various time-based evasions, such as delaying malware functionality upon initial execution using programmatic sleep commands or native system scheduling functionality (ex: Scheduled Task/Job). Delays may also be based on waiting for specific victim conditions to be met (ex: system time, events, etc.) or employ scheduled Multi-Stage Channels to avoid analysis and scrutiny.

Benign commands or other operations may also be used to delay malware execution. Loops or otherwise needless repetitions of commands, such as Pings, may be used to delay malware execution and potentially exceed time thresholds of automated analysis environments. Another variation, commonly referred to as API hammering, involves making various calls to Native API functions in order to delay execution (while also potentially overloading analysis environments with junk data).

Adversaries may also use time as a metric to detect sandboxes and analysis environments, particularly those that attempt to manipulate time mechanisms to simulate longer elapses of time. For example, an adversary may be able to identify a sandbox accelerating time by sampling and calculating the expected value for an environment's timestamp before and after execution of a sleep function.

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features.

Monitoring the following activities in your Organization can help you detect this technique.

Command: Command Execution

Invoking a computer program directive to perform a specific task (ex: Windows EID 4688 of cmd.exe showing command-line parameters, ~/.bash_history, or ~/.zsh_history)

Monitor executed commands and arguments that may employ various time-based methods to detect and avoid virtualization and analysis environments. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required.

Process: OS API Execution

Initial construction of a WMI object, such as a filter, consumer, subscription, binding, or provider (ex: Sysmon EIDs 19-21)

Monitor for API calls that may employ various time-based methods to detect and avoid virtualization and analysis environments. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required.

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Time-based evasion will likely occur in the first steps of an operation but may also occur throughout as an adversary learns the environment. Data and events should not be viewed in isolation, but as part of a chain of behavior that could lead to other activities, such as lateral movement, based on the information obtained. Detecting actions related to virtualization and sandbox identification may be difficult depending on the adversary's implementation and monitoring required. Monitoring for suspicious processes being spawned that gather a variety of system information or perform other forms of Discovery, especially in a short period of time, may aid in detection.

Data from Local System

Collection

BADFLICK has uploaded files from victims' machines.

Adversaries may search local system sources, such as file systems and configuration files or local databases, to find files of interest and sensitive data prior to Exfiltration.

Adversaries may do this using a Command and Scripting Interpreter, such as cmd as well as a Network Device CLI, which have functionality to interact with the file system to gather information. Adversaries may also use Automated Collection on the local system.

Data Loss Prevention

Data loss prevention can restrict access to sensitive data and detect sensitive data that is unencrypted.

Monitoring the following activities in your Organization can help you detect this technique.

Command: Command Execution

Invoking a computer program directive to perform a specific task (ex: Windows EID 4688 of cmd.exe showing command-line parameters, ~/.bash_history, or ~/.zsh_history)

Monitor executed commands and arguments that may search and collect local system sources, such as file systems or local databases, to find files of interest and sensitive data prior to Exfiltration. Remote access tools with built-in features may interact directly with the Windows API to gather data. Data may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

File: File Access

Opening a file, which makes the file contents available to the requestor (ex: Windows EID 4663)

Monitor for unexpected/abnormal access to files that may be malicious collection of local data, such as user files (pdf, .docx, .jpg, etc.) or local databases.

Process: OS API Execution

Initial construction of a WMI object, such as a filter, consumer, subscription, binding, or provider (ex: Sysmon EIDs 19-21)

Monitor for API calls that may search local system sources, such as file systems or local databases, to find files of interest and sensitive data prior to Exfiltration.

Process: Process Creation

Birth of a new running process (ex: Sysmon EID 1 or Windows EID 4688)

Monitor for newly executed processes that may search local system sources, such as file systems or local databases, to find files of interest and sensitive data prior to Exfiltration.

Script: Script Execution

Launching a list of commands through a script file (ex: Windows EID 4104)

Monitor for any attempts to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent. Data may also be acquired through Windows system management tools such as Windows Management Instrumentation and PowerShell.

Archive Collected Data

Collection

Archive via Library

BADFLICK has compressed data using the aPLib compression library.

An adversary may compress or encrypt data that is collected prior to exfiltration using 3rd party libraries. Many libraries exist that can archive data, including Python rarfile, libzip , and zlib. Most libraries include functionality to encrypt and/or compress data.

Some archival libraries are preinstalled on systems, such as bzip2 on macOS and Linux, and zip on Windows. Note that the libraries are different from the utilities. The libraries can be linked against when compiling, while the utilities require spawning a subshell, or a similar execution mechanism.

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features.

Monitoring the following activities in your Organization can help you detect this technique.

File: File Creation

Initial construction of a new file (ex: Sysmon EID 11)

Monitor newly constructed files being written with extensions and/or headers associated with compressed or encrypted file types. Detection efforts may focus on follow-on exfiltration activity, where compressed or encrypted files can be detected in transit with a network intrusion detection or data loss prevention system analyzing file headers.

Script: Script Execution

Launching a list of commands through a script file (ex: Windows EID 4104)

Monitor for any attempts to enable scripts running on a system would be considered suspicious. If scripts are not commonly used on a system, but enabled, scripts running out of cycle from patching or other administrator functions are suspicious. Scripts should be captured from the file system when possible to determine their actions and intent.

Ingress Tool Transfer

Command and Control

BADFLICK has download files from its C2 server.

Adversaries may transfer tools or other files from an external system into a compromised environment. Tools or files may be copied from an external adversary-controlled system to the victim network through the command and control channel or through alternate protocols such as ftp. Once present, adversaries may also transfer/spread tools between victim devices within a compromised environment (i.e. Lateral Tool Transfer).

Files can also be transferred using various Web Services as well as native or otherwise present tools on the victim system.

On Windows, adversaries may use various utilities to download tools, such as copy, finger, and PowerShell commands such as IEX(New-Object Net.WebClient).downloadString() and Invoke-WebRequest. On Linux and macOS systems, a variety of utilities also exist, such as curl, scp, sftp, tftp, rsync, finger, and wget.

Network Intrusion Prevention

Network intrusion detection and prevention systems that use network signatures to identify traffic for specific adversary malware or unusual data transfer over known protocols like FTP can be used to mitigate activity at the network level. Signatures are often for unique indicators within protocols and may be based on the specific obfuscation technique used by a particular adversary or tool, and will likely be different across various malware families and versions. Adversaries will likely change tool C2 signatures over time or construct protocols in such a way as to avoid detection by common defensive tools.

Monitoring the following activities in your Organization can help you detect this technique.

File: File Creation

Initial construction of a new file (ex: Sysmon EID 11)

Monitor for file creation and files transferred into the network

Network Traffic: Network Connection Creation

Initial construction of a WMI object, such as a filter, consumer, subscription, binding, or provider (ex: Sysmon EIDs 19-21)

Monitor for newly constructed network connections that are sent or received by untrusted hosts or creating files on-system may be suspicious. Use of utilities, such as FTP, that does not normally occur may also be suspicious.

Network Traffic: Network Traffic Content

Logged network traffic data showing both protocol header and body values (ex: PCAP)

Monitor network traffic content for files and other potentially malicious content, especially data coming in from abnormal/unknown domain and IPs.

Network Traffic: Network Traffic Flow

Summarized network packet data, with metrics, such as protocol headers and volume (ex: Netflow or Zeek http.log)

Monitor network data for uncommon data flows (e.g., a client sending significantly more data than it receives from a server). Processes utilizing the network that do not normally have network communication or have never been seen before are suspicious.